All posts by Chris

Specialized DNA Nanobots Close Cancer Tumor’s Blood Supply

Specialized DNA Nanobots Close Cancer Tumor's Blood Supply
Specialized DNA Nanobots Close Cancer Tumor’s Blood Supply

Robotics has made quite a splash in manufacturing and industrial applications, and now it’s on the brink of a breakthrough in a completely different arena. Future cancer treatment options may include an army of tiny tumor-fighting nanobots.

Biochemistry Meets Industrial Technology

The concept is in the preliminary stages, so real-life use is still far off on the horizon. Scientists are encouraged by the results of a study that was recently published in Nature Biotechnology.

Researchers conducted the test on a group of mice with human breast cancer tumors. Specially engineered DNA nanobots containing a payload of thrombin, an enzyme that causes blood to clot, were then injected intravenously into the affected mice.

Once inside, the nanobots delivered the thrombin directly to tumor-associated blood vessels, where they induced intravascular thrombosis. As a result, cancer cells were deprived of their blood supply and ultimately died off.

Sparing Healthy Cells

While scientists welcome any advancement in cancer treatment, one particular aspect of DNA nanobots is especially promising. During testing on the mice, the nanobots focused exclusively on cancer cells. There was no damage to healthy cells, unlike results often found in traditional cancer treatments such as radiation and chemotherapy.

Issels®: The Leader in Personally Designed Cancer Treatment Programs

Our founder, Dr. Josef M. Issels, was a visionary in the field of immunotherapy for cancer. We’re proud to carry on his legacy by offering non-toxic treatment programs that are individually tailored to meet each patient’s unique needs.

Contact us to learn more about our core treatment protocols and how we have helped patients with advanced and therapy-resistant cancers achieve long-term remission.

Liquid Biopsy Test for Cancer Has Problematic Accuracy Results

Liquid Biopsy Test for Cancer Has Problematic Accuracy Results
Liquid Biopsy Test for Cancer Has Problematic Accuracy Results

Early detection improves the chances of successful cancer treatment, so recent news of a “liquid biopsy” has encouraged the medical community. Unfortunately, the test is showing unacceptable levels of accuracy, leaving the procedure a long way from any real-world applications.

Controlled vs. Real World Conditions

CancerSEEK uses a blood sample for a battery of tests to measure tumor biomarkers and identify cancer-associated DNA mutations. During clinical studies, researchers obtained some promising results.

By the team’s own admission, the conditions were optimized to facilitate detection of cancer. Even so, most of the cancers detected were late-stage while the goal of screening was to find cancer in the early stages.

Accuracy problems in less-controlled environments became more clear in a 2017 study involving 40 prostate cancer patients who underwent liquid biopsies to fine-tune their therapy programs. Each sample was sent to two different labs with similar technology, but the results differed for more than half of the patients.

Are Liquid Biopsies the Answer?

Researchers are also questioning the full value of a positive result. While the test may detect the presence of cancer, it gives no clues as to the location of the tumor, unlike traditional screenings such as mammograms and CT scans.

Scientists will no doubt continue to study the science behind liquid biopsies, as detection of circulating tumor DNA can have other applications. The question remains whether liquid biopsies have a viable future as useful cancer screening.

Personalized Cancer Treatment at Issels®

We use a variety of specialized non-invasive standard and genomic diagnostic tests to create the cancer treatment that’s right for you. Contact us for more information.

Oncolytic Virus in Research May Herald a Cancer Vaccine for the Future

Immunotherapy brings breakthroughs to cancer treatment.
Immunotherapy brings breakthroughs to cancer treatment.

Promising new cancer treatment research by UC San Francisco has uncovered a cancer killing virus. The vaccine-like effect of the virus harbors potential for use with cancer immunotherapy treatment options, killing some cancer cells directly, and prompting a widespread immune system response to cancer cells far beyond the region the virus infects.

Tremendous Potential
Bringing surprising insight, this new research digs deeper into how oncolytic (cancer-killing) viruses can cooperate with the immune system in attacking cancer cells and tumors. Currently in clinical trials, it points to opportunities in the realm of immunotherapy combination therapies – therapies specifically devised to unleash the full cancer fighting potential of the immune system.

Researchers likened such oncolytic viruses as the equivalent of a bomb, jarring the immune system into action and resuscitating the immune response.

How Do They Work?
Researchers are still coming to terms with fundamentals, which seem to indicate cancer killing viruses attack cancer cells in a number of different ways:

-Through direct infection.
-Via the release of tumor-specific proteins, which trigger a widespread immune response to cancer cells.
-By destroying the blood supply tumors required to survive.

Why a Virus?
Cancer researchers have been exploring the idea of oncolytic viruses since the early 20th century, after observing dramatic remissions following some viral infections. They’ve been actively developing these viruses since the 1980s. With the FDA’s approval and release of oncolytic viral therapy Imlygic (T-Vec) in 2015, such treatment modalities are quickly coming to the forefront of up-and-coming therapy options.

Searching for a new approach to cancer treatment? Contact Issels® to discover more about our non-toxic immunotherapy treatment options that are available today.

Research Studies Now Under Way to Starve Cancer Tumors

Research Studies Now Under Way to Starve Cancer Tumors
Research Studies Now Under Way to Starve Cancer Tumors

According to a popular old wives’ tale, you should starve a cold and feed a fever. Scientists working on immunotherapy for cancer are taking that advice a step further as they develop a new treatment that “starves” tumors to death.

Cutting Off Cancer’s Fuel Source

Glutamine is an amino acid found throughout the body, with the largest concentrations in blood and bone. While glutamine plays a major role in cellular synthesis of proteins, it also provides fuel for the rapid cell division of many types of cancer.

A research team at Vanderbilt University in Nashville began exploring the idea of blocking glutamine from cancer cells as a possible form of treatment. They focused on ASCT2, a protein that transports glutamine to cancer cells as well as other parts of the body.

The scientists created an ASCT2 inhibitor called V-9302. In testing on both mice and cancer cells developed in vitro, V-9302 was able to stop tumor growth by increasing oxidative stress on cancer cells, leaving them to eventually die off.

Using PET Imaging to Trace Tumors

As the team noted in their report, the next step is to find a way to determine how effective the inhibitors are in restricting glutamine access. The researchers suggested using positron emission tomagraphy (PET) scans to spot increases in glutamine metabolic rates.

Individually Created Immunotherapy for Cancer at Issels®

Not all cancer patients respond to treatment the same way. That’s why our immunotherapy for cancer programs are designed to address each patient’s unique case. Contact us to learn more about Issels® and our track record of helping patients achieve long-term remission.

Swiss Group Studies Dendritic Cell Vaccines with Artificial Receptors

New Cancer Research Is Improving Treatment
New Cancer Research Is Improving Treatment

One of the challenges doctors face with cancer treatment is designing a program to meet a patient’s unique needs. Immunotherapy for cancer is helping to provide solutions to this problem, such as recent improvements to dendritic cell vaccines.

Immunotherapy: Priming the Body’s Immune System

While the body’s immune system is extremely capable when it comes to fighting viruses, bacteria and other invaders, cancer cells often demonstrate a remarkable ability to evade detection. Immunotherapy works by enhancing the immune system’s power to target and destroy cancer cells.

Dendritic cells are one of the immune system’s “messengers” that present antigens to killer T-cells for destruction. Researchers in Switzerland began looking for a way to improve the effectiveness of dendritic cell vaccines.

Helping the Immune System Recognize Cancer Cells

Prof. Michele De Palma and his team created artificial receptors known as EVIRs, which are inserted in dendritic cells extracted from a patient. Once reintroduced into the patient’s system, the EVIRs are engineered to recognize exosomes that transport molecules between cells, sometimes assisting in the spread of cancer.

As EVIRs capture exosomes, it allows dendritic cells to present antigens on their outer surface, simplifying recognition and attack by killer T-cells. De Palma and his team have dubbed this phenomenon “cross-dressing,” and they’re hoping that the process will improve the specificity of cancer treatment.

Issels®: A Successful Legacy of Immunotherapy for Cancer

At Issels®, we are exclusively focused on immunotherapy for cancer with patients who have advanced or therapy-resistant cancers. Contact us to learn more about our dendritic cell vaccines and other non-toxic, personally tailored immunotherapy treatment programs.

New Understanding of High-Risk Neuroblastoma from Massachusetts Research

Issels the Premier Provider of Immuno Oncology
Issels the Premier Provider of Immuno Oncology

Neuroblastoma is a cancer of the sympathetic nervous system that affects primarily infants and children. Thanks to a Massachusetts-based research team, there is now more information about the growth of neuroblastoma that will aid the development of more effective cancer treatment.

“Hijacking” Healthy Cells

Neuroblastoma gets its name from neuroblasts, which are immature cells where this form of cancer develops. For this study, researchers focused on MYCN and c-MYC, two related proteins that have been linked to neuroblastoma’s progression.

In studying tumors from 123 neuroblastoma patients, the team discovered that 25 percent had MYCN applications and another 10 percent showed overexpression of c-MYC. While the groups didn’t overlap, both showed similarly poor survival rates.

Scientists then conducted a study with zebrafish and determined that c-MYC is a more powerful oncogene (a gene that has the potential to turn a normal cell cancerous) than MYCN, Results showed that c-MYC overexpression has a greater chance of creating neuroblastoma along with a shorter onset time.

Debut of 3D Genomics

Another exciting aspect of this study is that it was the first use of 3D genomics. A technology known as Hi-C, or in situ chromosome conformation capture, helps researchers study genomic interactions to identify abnormalities.

Since c-MYC can be detected in the clinic, scientists are hoping that they’ll eventually be able to develop a new cancer treatment that targets and degrades the protein.

Personally Tailored Cancer Treatment Programs from Issels®

Just as all people are individuals, so too are all cases of cancer different. We use targeted therapies and other treatments to address the specific needs of each patient. Contact us for more information.